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Abstract

Using an impulse or Dirac delta approach, the stability and growth of yaw
for a spin-stabilized projectile as it transits a yaw card range is
investigated. The card-induced changes in the complex yaw arm
amplitudes and phases are expressed as difference equations. For a yaw
card range with uniform spacings, the solutions to the general difference
equations yield the magnitude and phase values for the complex yawing
arms as a function of the card index number. A stepwise encounter with a
yaw card reduces the epicyclical phase values across the yaw card. The
parameters for the solution include encounter phase value at the entrance
of the range, the characteristics of the yaw card, and the distance between
the cards. Critical curves separating stable and unstable flight are
presented as a function of yaw card spacing and a stability parameter that
depends upon both the flight characteristics of the projectile and the card
material and thickness. Quasi-universal curves of a transformed epicyclical
phase encounter value versus a normalized epicyclical phase reduction
value are graphically presented.
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YAW CARD INFLUENCE ON STABILITY AND YAW GROWTH
FOR SPIN-STABILIZED PROJECTILES

1. INTRODUCTION

Yaw card arrays set up at equal intervals on a firing range have been used to obtain
flight data when spark ranges are not available or when the spark range operations could
be compromised. The interactions of the projectile with the yaw cards cause the reduced
flight coefficients to differ from the spark range values. McCoy (1992) used a Fourier analysis
approach and assumed that the fluctuating details generated by the yaw card interactions
would average zero, thereby obtaining an average phase shift for each projectile-card interac-
tion. These projectile flight data, when reduced and corrected for the yaw card interactions,
predicted the flight coefficient values obtained in a spark photography range. Cooper and
Fansler (1997), using a Dirac delta approach, considered the individual interactions of the
projectile with each yaw card and calculated the fast and slow arm magnitudes at each
card along with the phase changes. With the new approach, they were able to examine the
variations from the average value at each card. The calculations for a given card depended
upon the calculation obtained for the previous card. In turn, the previous card calculation
depended upon the adjacent card before it. Thus, calculations needed to be performed for all
the cards, beginning at the first card. For small perturbations, they obtained the correction
needed to reduce the yaw card range flight data to the equivalent spark range data, which
was previously obtained using McCoy’s (1992) approach. Thus, the correction is only valid

for small perturbations, or equivalently, sufficiently thin yaw cards.

Because the material comprising the yaw cards is dense, it is reasonable to expect that
decreasing the spacing of the yaw cards sufficiently or using thick yaw cards might result
in destabilizing the flight of projectiles through the range. In particular, marginally stable
projectiles would require careful design of the range to avoid inducing instability. McCoy
(1992) asserted that the usual stability criterion, extended with his correction to the moment
for the yaw card range, was still valid. Cooper and Fansler (1997) validated the assertion
by calculating the unstable growth that met McCoy’s criterion for instability. They also
pointed out that the obtained expression was actually an approximation valid only for small
values of the stability parameter, which is equivalent to assuming that the yaw cards are
sufficiently thin. Cooper and Fansler also calculated the card-by-card growth of a projectile’s
yaw in a range that has its card spacing corresponding to nearly the optimum condition for
maximum amplitude increase for the modal arm amplitudes. They could also examine the

detailed yawing for a projectile that entered the range at different initial epicyclic phase




values, both for stable and unstable flight.

The current approach is a continuation of the work by Cooper and Fansler (1997). As
before, interactions with the yaw cards are treated as discrete impulses, but now a yaw card
range with equal intervals between yaw cards is assumed. This approach yields second order
difference equations with known solutions. With solutions for the second order difference
equations known, it is no longer necessary to know the behavior of the projectile at all the
preceding yaw cards. In this report, the boundaries between stable and unstable flight are
determined along with the growth rate for yaw modal arm amplitude and its dependence
on various parameters. These expressions are valid for both small and large values of the
stability parameter. Quasi-universal functions are obtained, giving the relationships between
the phase encounter value at each card, the epicyclic phase jump value, and the change in

the modal arm magnitudes caused by the card encounter.

2. THE DIFFERENTIAL EQUATION OF MOTION FOR PROJECTILES
FIRED THROUGH YAW CARDS '

The differential equation of pitching and yawing motion for a spinning, symmetric pro-
jectile, acted upon by a linear pitching moment and neglecting damping processes is given
in Murphy’s notation (1963):

g —iPé — ME =0, (1)

in which

N
I

sin 8 + 7 sin a, the complex yaw,
L pd
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= axial moment of inertia,
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= transverse moment of inertia,
= projectile reference diameter,
axial spin

= air density,

B ow oA &
Il

= 7d?/4,reference area,

Cym, = aerodynamic pitching moment coefficient,
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and the independent variable is the distance in calibers. For this report, it is assumed that
the amplitude of the complex yaw is small enough that sina ~ o and sin 8 ~ 5. Only the

first order aerodynamic coefficients are then used.

Equation (1) is the equation of motion in air but the yaw card range has cards consisting of
dense material at various spacings. Following Cooper and Fansler (1997), a nondimensional

card-overturning moment can be defined for the card material, similarly to M:

_ pAL

M, = . 2
SO 2
The corresponding nondimensional impulse for the card-overturning moment is defined as
pAd?T,
1= CM.., 3
2T, M (3)

and the independent variable is the distance, s, in calibers.

For the yaw card range, Equation (1) must be modified to account for the yaw card
interactions. As discussed in the preceding section, each yaw card transmits an overturning
moment to the projectile, which can be modeled as an impulse located at the position
sj, which is the arclength traveled by the projectile, given in calibers. The Dirac delta
function (Dennery & Kryzwicki 1967) is used with the pitching moment impulse value, and
the interactions of these yaw cards with a projectile are represented by replacing M with
M +1I.377_, 6(s — s;). Equation (1) is replaced with

£ —iPE — M +Iczn:6(s —s;))é =0, (4)

J=1
3. DIFFERENCE EQUATIONS FOR THE DIRAC DELTA APPROACH

The solution of Equation (4) in the interval between the jth card and the jth + 1 card
is, as given by an extension of Murphy’s notation (1963):

£ = Ky ;e 4 K, ;e%9¢%° j=0,1,--+,n 1, (5)

in which ¢, ; and ¢, ; are the card-modified initial phase angles of the fast modal arm and the
slow modal arm, respectively, after interaction with the jth yaw card but before interaction

with the jth + 1 yaw card. The phase angular velocities for the fast and slow modal arms,

¢} and @), are

1 1
¢ = FP+3VPT—1M, (6)

2
11
¢ = 5P— VP -4l (7)




It is assumed that the projectile is spin stabilized and is gyroscopically stable while traveling
through the air. This stable condition requires that /P2 —4M is real and, in turn, implies
that the values of ¢} and ¢, are real. To achieve stable flight, even in cold and dense
air, the axial angular velocity, p, must be large enough so that a comfortable margin of
stability is achieved. Good margins of stability are achieved for most projectiles with twist
designs varying from one revolution in seven bore diameters to one revolution in 20 calibers.
Likewise, K; ; and K ; are the fast modal arm and slow modal arm amplitudes, respectively,
after interaction with the jth yaw card but before interaction with the jth 4+ 1 yaw card.
The value of j can be zero, which indicates that the projectile has not yet interacted with a
yaw card. Equation (5) describes the motion of an epicycloid in which both modal arms are
moving. Equation (5) can be rearranged to illustrate the salient aspects of the motion as it
relates to yaw cards:

E = Ky et eiths | B1d gibrs—tni) gitei-as 1 1] 8)

2.

in which we use the relationship, ¢, — ¢4 = v/P2 —4M. Equation(8) shows that if the
observer moves with the slow arm, a circle is completed in the distance interval, As =
(27)/(v/P? — 4M). The superimposed circle constitutes an epicycle. For a statically unstable
projectile, both arms move in the same direction. The phase angle value of the first term in
brackets when the projectile encounters a yaw card will determine the impulsive forces on the
projectile. Consider when K; ; = K, ;. When the epicyclic phase angle, ¢1,;— 2 ;+(67 —83)s,
equals zero, the modal arms are aligned in the same direction and d|€|/ds = 0. When the
phase angle equals 7 /2, d|€|/ds is decreasing most rapidly. When the phase angle equals T,
the total yaw and d|€|/ds are zero. When the epicyclic phase angle equals 3r/2, d|€|/ds is

increasing most rapidly.
For convenience, the complex modal arms are defined as
Ki; = Kie®, (9)
Kjgyj szjewz'j . (10)

With the above definitions, Equation (5) becomes
£ = Ky ;67 4 Ky jet2. (11)

Equation (4) can be integrated across the jth card to obtain the difference equations:

~ ~

E(si+) = £&(si-)s (12)

E(sjr) — E(s5-) = TLls;). (13)

The negative sign denotes the side of the yaw card that the projectile approaches and the
plus sign denotes the side of the card that the projectile leaves. Equations (12) and (13)
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show that the value of the epicyclic yaw is not changed by the projectile-card interaction,
but the derivative of yaw is changed.

3.1 Modal Parameters Before and After Interaction

Equation (11) and its derivative with respect to s can be substituted into the difference

equations and solved for Ky ;41 in terms of Ky ;, in which k¥ = 1,2 and j can also have the

value zero:
17, I, — 41
Kl:j-i-l = Kl.j ¢/ ¢/K Y B ¢I ¢I K:ZJe (61-02)54 (14)
11, I, s
IC2'J<+1 - [C,_,,j ¢/ ¢/ ](:2,.7 ¢/ ¢/ }Cl’]e (¢1—93) 41 (15)
Cooper & Fansler (1997) defined
o L
T B —
— _Ic___, (]_6)
P2 —4AM
S; = (¢ — é2)si
= VP?—4Ms;, (17)
so that,
,C1,j+1 = ,Clyj -_ iﬂ’Cl,]' — ip’Cz,je_"SHl’ (18)
Kajr1 = Kaj+ipKaj+ipKy e, (19)

in which 4 is called the impact stability parameter. Equations (18) and (19) were used to
obtain the point-by-point results and the approximation that delineated the line between
stable and unstable flight behavior (Cooper & Fansler 1997).

The square of the moduli of K4 j4; and K3 ;41 can be immediately obtained from Equa-
tions (18) and (19).

Kij1)
(M) = 1—2ﬂK_51n( ®j11) +

Kl,j Ky 1,5
K K,
WL+ (D) + 232 cos(@00)) (20)
] »J
K, m)? K,
— = 1—-2u—==sin(®,41)+
( K2,j usz ( J+1)
K K
WL+ () + 22 cos(@s)], (21)
»J »J
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in which
®j41 = Sig1 + &5, (22)
in which
$; = b1j — bo.s (23)
and ®;,; is called the epicyclic phase encounter value at the jth + 1 card.

The explicit expression for the sine of the modal arm phase angle change at each yaw
card, which was obtained earlier (Cooper & Fansler 1997), is
— K1, + K3 cos(®j1]

sin(é1,41 — ¢1,5) Ky 01 ) (24)
1]

. K, + K ®;

sin(¢2,j41 — $2,5) = Les K:’:(;IOS( JH)]' (25)
sJ

For K ; = Kj;, Equations (24) and (25) show that the card-modified phase angle, ¢1 ;,
of the fast arm is always reduced by the impact, while the card-modified phase angle, ¢,
of the slow modal arm is always advanced. The total epicyclic phase change caused by the

impact would be <;A5j+1 - qﬁJ The epicyclic phase jump is defined as
Oip1 = —(Pj41 — ;) (26)
Figure 1 shows the epicyclic phase jump, ¢;41, and the modal amplitude change induced by

the interaction normalized by their maximum values as a function of the epicyclic encounter

value, ®;44.

p=0.1
. Ky 0 / K2,0 =1
0.5 Op=0jyp/ (4 tan™! 1)
AKn = (Ki,j+1/Ki,j - 1)/F(u)
Al F(p) = p2l(1+p2)12-1]

Figure 1. Normalized Phase Jump and Modal Arm Amplitude Versus the Epicyclic Phase
Encounter Value (g = 0.1).

The maximum value of 0;4; can be easily obtained from Equation (25) with the assump-

tion that o;41/2 = @2,j+1—@2,j. Differentiation of Equation (25) with respect to the encounter
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phase value and setting the expression equal to zero will, with trigonometric identities, yield

the maximum value, 0,41 = 4tan~?!, which is used to normalize ®;;, in Figure 1.

Also superimposed upon the figure is the normalized curve for the fractional increase or
decrease in the modal arm amplitude. The phase encounters resulting in decreasing modal
arms, AK, < 0, occur for 2tan™'p < ®,;; < =, while the phase encounters that yield
only increasing modal arm amplitudes occur for the values, 7 < ®;4; < 27 + 2tan! .
These boundary points, or points where AK,, = 0, can immediately be obtained by setting
the amplitude ratios in Equations (20) and (21) to one and solving for the phase encounter
values. The minimum and maximum values of AK, occur when ®;,; = 7/2 + tan™! y and
® = 37/2 + tan~! p, respectively. These extreme values can be obtained by differentiating
Equations (20) and (21) with respect to the phase encounter value and setting equal to zero
and solving. The negative part of the curve showing the fractional decrease in the modal arm
amplitudes is normalized by the value, up—+/1 + pZ+1, whereas the fractional increase in the
modal arm amplitudes is normalized by p++/1 + 42 — 1. The interaction takes place tan™! u
past the points where the projectile is pitching most rapidly down and up, respectively.

! with the interaction effectively taking place around

The interaction yields 041 = 2tan™
minimum and maximum values of d|¢|/ds. The force that occurs on the projectile at these
values is along the lateral motion of the projectile. This is an example of the general result
that a given impulse changes the kinetic energy maximally when the absolute value of the

dot product of the momentum with the impulse is a maximum.

An invariant relation between the magnitudes of the two modal arms is applicable to
both stable and unstable yawing motion. Some manipulation of Equations (20) and (21)
yields

K12,j+1 - Kzz,j+1 = K12,j - Kf,j. (27)

The above equation then implies that
K12,j - K22,j = K12,o - Kf,o, (28)

which is a hyperbola curve in two-dimensional space for the two modal arms, which expresses

an invariant quantity for the interaction process.

3.2 Solution for Uniform Yaw Card Range With Difference Equations

Equations (20), (21), (24), and (25) can be used to obtain a point-by-point calculation
of the modal behavior for cards with any arbitrary spacing, but yaw card ranges are usually
comprised of a series of equally spaced cards to facilitate obtaining the projectile’s flight

coefficients. If the intervals between the cards are all equal, the phase interval characterizing




the range is

Yo = Oj41 — Sj, (29)

a relationship between the yaw arms for three succeeding cards can be obtained:

K42 —29e” 2K 01+ e7Ky; = 0, (30)
Kajy2 — 296" Ko i1 + €7Ka; = 0, (31)
in which
¥ = 7 —2mmr, (32)
g = psin(y/2) + cos(v/2). (33)

in which m = 0 or a positive integer and 0 < v < 2r. When m > 1, the cards are spaced
so far apart that more than one cycle of motion occurs. The symbol, v, will be called the
principal phase interval. The use of the principal phase interval simplifies the analysis and
equations. It is assumed that the values of ¢, and ¢z are the initial phase values of the
fast and slow modal arms, respectively, found at a phase interval, +,, in front of the first

card.
To solve the difference Equations (30) and (31), define
Kij = Qe "2, (34)
Kaj = Qe (35)
Equations (30) and (31) then become
Q42 — 2991541 +Q1; = 0, (36)
Qo j+2 —29Q241+ Q2; = 0, (37)

which are in a standard form (Hildebrand 1968). In the above form, Equations (36) and
(37) are equivalent and have the same general solution. Another standard form, which may

be more convenient to work with, is provided by substitution with the definitions:

cosf = gforg<i, (38)
coshd = gforg > 1. (39)

When g < 1, the difference equations yield stable solutions, whereas when g > 1, unstable
solutions are obtained (Hildebrand 1968). For g < 1, the general solution to Equations (36)
and (37) is, using the above definitions, '

Q1; = Aisin(y —1)0 + Ay ;sinjé, (40)
Q2; = Agisin(j —1)0 + Az;sin 5. (41)

8



For g > 1, substitute :6 for 6 to obtain the hyperbolic functions.

Substitution of Equations (40) and (41) into Equations (36) and (37) with j = 0 and
j =1 gives the expression for the modal complex yaw arm and yields for g < 1, in terms of

the initial conditions:

e~Mi=1)/2 ) . : . : ..
Kij = _sin—O—{[)Cl’o(l —ip) —1uKqope™]sin 70 — lCLoe_”/2 sin(j — 1)0}, (42)
Ko, m—{[’cm(l +ip) + 1pK10e™] sin j6 — Ko 06 ?sin(j — 1)}, (43)

The quantities within the square brackets in the above equations are the values of the modal
arms after passing through the first card. Again, for g > 1, the above trigonometric functions
are replaced by the respective hyperbolic functions:
e—(1-1)/2 _ ,
Ki; = m——{[ﬁl,o(l —ip) — iuKy e sinh 50 — Kq e~/ ?sinh(j — 1)6}, (44)

ei'y(j-l)/z

Ko sinh 8

{IKa0(1 + in) + iuK; €] sinh 50 — Ky 062 sinh(j — 1)6}, (45)

The ratios of the jth yaw arm moduli to their original values can be obtained either from
first principles or with algebraic manipulation of Equations (42) and (43), with substitution

for trigonometric identities. The resulting equations are, for g < 1,

K ) 2 . .0
A} g = 223_[01 sin 6 + D, sin(j — 1)d], (46)
Kip
Kz;\’ 6
(ﬁ) _q = SnJ ——75[Casin j6 + Dy sin(j — 1)9] (47)
K p
in which, the constants, Cy, C3, Dy, and D, are
Ko\5 , K20
C = -2 ) 1 222 cos & 4
| ,uKlosm 1+ u? [+(K10)+ KIOCOS 1], (48)
B Kio . - Kip Kio &
C, = Q“K, sin ®; + p? {1+(K20) +2K20cos(1>1}, (49)
K,
D = 2,uK— sm(<I)1 v/2), (50)
Kio . 2
D, = Zu-K—' sin(®; — v/2), (51)
in which
&, = ¥ + ¢1,0 — P20 (52)

Since &, corresponds to the initial conditions at the first card, the initial starting condition
can be relaxed to any position in front of the first card and ®; can be replaced by ®;, as in
Equation (22), in which

Dy = Sy + do. (53)

9




From Equations (20) and (21), the values C; and C; are recognized as the square of the

moduli minus 1.

For unstable yawing motion, or equivalently, g > 1, substitute the hyperbolic functions for
the trigonometric functions wherever the function argument is . With further manipulation,

the expression can be written as an increasing term plus a decreasing term minus a constant

value term:
(_I_G_J)2 g - (Cl + D16"0) e?? + (Cl + Dle") e=%% — 2(Cy + Dy cosh 0) (54)
Ko B 4sinh? @ ’
(&)2 4 - (C2 + Dze'g) e + (Cz + D2eo) e~ — 2(C; + Dz cosh §) (55)
Ko - ' 4sinh? 6 '

For ¢ = 1, the general solution for the squared amplitude of the modal arms can be obtained

by taking the limit of 8 going to zero in Equations (46) and (47):

(%)2_1 = jl(C +D1)j — D), (56)
(%)2 -1 = jl(Co+D2)j — D2, (57)

Although the projectile flight is unstable for g = 1, the modal arm amplitudes increase only

linearly instead of exponentially, as occurs for g > 1.

For stable yawing motion, Cooper and Fansler (1997) observed that the values for the
change from the initial modal lengths lay in an envelope with a midpoint average value that
was, in general, not zero. If Equations (46) and (47) are integrated with j treated as a

variable and then divided by the integrated interval, the average values are found to be

Ki;\? 1
(K—L(;) 1 = 2sin2 9 [Cl + Dl COS 0] , (58)
Ka;\? 1
(K:Z.O) -1 = 5ong [C2 + Dacosb]. (59)

Here the average value depends both on the initial modal phase and the card interval spacing.
As ~ is varied so that the stability boundary is approached, then sin @ becomes smaller and

the absolute values of the average quantities can become larger.

4. STABILITY BOUNDARIES AND GROWTH IN YAW

In the last section, it was shown that the boundary for stability corresponded to the
condition that ¢ = 1. With trigonometric identities, it can be established from the definition

10




for g, Equation (33), that the stability boundaries for <, encompassing phase difference

intervals are given by

Mow = 2mm, (60)
Thigh = 2mm +4tan”! g, (61)

in which m = 0 or a positive integer and K; 9 = K. The usual approximate launch
condition from an unworn gun is Kj9/Ks30 = 1. The subscripts “low” and “high” designate
the minimum and maximum values of the phase interval for a given region designated by

the integer, m.

The maximum growth curves in the u,v,-plane are obtained by differentiation of Equa-

tion (33) with respect to v and setting the resulting expression equal to zero:
Ymax = 2mm + 2tan~! p. (62)

in which K; o = Kjp. Figure 2 shows the first two of the regions for stable and unstable
behavior. The growth rate is a maximum when 7, = 2tan™! u for the lower unstable region
and 74, = 27 + 2tan~! 4 for the next unstable region. This maximum growth rate curve

corresponds to g = /1 + pZ.

-(—U ms= 1
>

T
£

8 Unstable

c 6l

o
g Unstable boundary
S s — — — :  Maximum growth

3 m=0
8 Stable
o,

06 J— -— w— — —

= - Unstable

0.2 0.4 0.6 0.8 1

!, Imbact stability parameter

Figure 2. Stable and Unstable Regions as a Function of p.

Cooper and Fansler (1997) have already shown that with some assumptions including
p < 1, the condition for stability as given by McCoy (1992) can be reproduced. This
condition can also be obtained with the present approach, assuming only that y < 1. The

conditions for instability in the present approach are that g > 1 or, equivalently,

usin%+cos% > 1. (63)

11




Expand the trigonometric functions in series for small y. For limiting small values of u, only
the first terms need to be kept to obtain the conditions for instability:

p—=v/420. (64)

With Equations (29), (64), (16), (3), and (2), and some algebraic manipulation, the approx-
imate gyroscopic stability factor for stable yawing motion is
P2
S0 = XM ¥ Morjd)

1. (65)

The boundaries obtained for the approximation, Equation (64), and the exact solution
are shown in Figure 3. Here, it is shown that the approximate solution agrees well for u < 0.4
and, for conventional yaw card ranges (u = 0.1 for a card range designed for a 7.62-mm rifle,
according to McCoy [1992]), the approximate solution is adequate. For larger values of p,
the straight line approximation of v by Equation (64) is larger than the exact value.

Ty -
2 s

k= 7

© 3 Y=4p_

8 7

]

g .

© Stable [ sin(y'2) + cos(y/2) = 1
8 Unstable

©

£ 1

a Exact

2 — — — Approximate

02 0.4 06 0.8 1
u, Impact stability parameter

Figure 3. Comparison Between Approximate and Exact Solution for the Stability Boundary.

Some general conclusions can be obtained by examining the unstable behavior of the
modal arms for a large number of yaw cards. To investigate the asymptotic behavior of
card interactions, treat the card index number, j, as a continuous variable and differentiate
Equation (44) with respect to j obtaining

dky ;

~ (06— Dy,
7~ (0= (66)

Integrating Equation (66), it is obtained that for a card index value, k, larger than j the

12



value for the first modal arm is approximately
Ky = e(k‘j)ge"'(k‘j)”/zlcl,j. (67)

Equation(67) shows that, for large index card numbers, the magnitude of the modal arms
will always increase and the phase change at each encounter is simply half the principal value
of the phase difference interval. Likewise, the second modal arm amplitude will increase in
the same way, but the second modal arm will be advanced instead of retarded. These results
show that the behavior of the modal arms at large values of j is independent of the initial
conditions. Note that no restrictions have been placed on the relative phases or sizes of the
modal arms. Even though the initial phase encounter value may be such that the amplitudes
of the modal yaw arms decline as the first part of the yaw card range is traversed, the phase
encounter values eventually adjust so that the phase shift and amplification factor depend
only on the stability parameter, 4, and the principal value of the phase difference interval,
5. For small values of p, 8% ~ y(u — v/4) and 6% ~ 2(g — 1).

For large values of j, K1 41 = K3 j41, from Equation (28). With K; j11/K; ; approaching
a constant value, according to Equation (66), the epicyclic phase encounter value, ®;4,, also
approaches an unchanged or stationary value, from Equations (20), (21), (24), and (25). This
means that the epicyclic phase jump, ¢;4+1, asymptotically approaches the phase interval
value, v, as the projectile advances through the range. The value of ®;,; would depend on
the value of vy ~ 0;41, determined by the functional form shown in Figure 1.

The same functional form is obtained from the solution to the difference equation. Setting
the second term in parentheses on the right-hand side in Equations (54) and (55) equal to
zero and solving for the relationship between ®; and v gives the condition for stationary
phase encounter values, ®;,; = ®;, that yield modal arm amplitudes with a constant factor
for the increase. In the same manner, setting the first term in parentheses on the right-hand
side in Equations (54) and (55) equal to zero and solving for the relationship between ®;,;
and 7 gives the condition for stationary phase encounter values that yield decreasing modal
arm amplitudes. The value of @, that satisfies these conditions for a given value of ~ is
designated as ®,. One value of ®., would be found for both an increasing and a decreasing

value for the change in the modal arm amplitude.

The solutions for v, are given in Figure 4, which shows the phase interval values as a
function of @, for 4 = 0.1. Equation (67) shows that the phase encounter values, 2tan~! u <
®;,1 < 7, cannot exist for large values of j with cards uniformly spaced. The curve is shown
as dashed wherever there is a fractional decrease. Because the phase encounter values cannot
occur for large values of j when the amplitude is decreasing, these corresponding phase

encounter values are more accurately designated as pseudo-stationary phase solutions or the
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phase encounter solutions for the pseudo-stationary branch for the phase interval between

yaw cards, Y.

05}

2
\ (I)Y (rad) / p=0.1
N | ‘\\ 'I’ K1 ,o / K2,O =1
05 \ 7 Yh=7Y/(4 tan™1 1))
\\\ ',’ AKn = (Kl,]+1/Kln] - 1)/F(u,)
-t F(w) = p[(1+p?)!2-1]

Figure 4. Stationary Phase Encounter Values Versus the Phase Interval with the Superim-
posed Curve for the Fractional Change in the Modal Arm Amplitudes (¢ = 0.1).

Much of the information about stationary phase solutions could also be obtained from the
single card treatment of the preceding section. If one assumes that v = 0,41, Figure 4
can be obtained, but with no immediate knowledge of the pseudo-stationary solutions. The
value of v is normalized by dividing by its maximum value, 4 tan~! , which occurs at
®;41 = 2tan~! y. Figure 4 shows that the modal arm amplitude remains constant at both
®;41 = 2tan~! p and ®;4; = 7. The latter value corresponds to the position where the
projectile is aligned with the flight direction (neglecting the yaw of repose), and minimal

interaction with the target would be expected.

The expression in the second set of parentheses in Equation (54), when set equal to
zero to obtain stationary encounter phase solutions, can be used to obtain a relationship
between a shifted value of the encounter phase value and the phase interval between cards.
The expression in the first set of parentheses could also be used because the modal arms
are assumed equal, and a squaring operation will be used that enables applicability to both
decreasing and increasing values of the modal arms. When the resulting equation is expressed
in terms of @, — /2 and the results squared to obtain a quadratic equation that is solved,
a transcendental relationship is obtained between the transformed value of the encounter

phase and phase interval between cards:

____sin('y/Q) — cos(y/2). (68)

COS (-I-)'Y =
With the substitution of tan a for  and using trigonometric identities, Equation (68) can
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be represented as

- sin(y/2 —a)
sy = —

: (69)

in which @ = tan™! p. Both the quantities, v/2 — a and a, in Equation (69) are small enough
so that they can well approximate their sine functions. Finally, dividing 4 by the normalizing
factor, 4tan™! y, yields the quasi-universal relationship between the normalized value of 7
and . ‘

Yn = (14 cos @,)/2, (70)

in which &, = ®., — /2 which applies for all realistic values of u for a yaw card range. By
transforming to the variable, ®., the relationship between the phase interval difference, 7,
for the card spacing and the value of ®., needed to maintain a constant value of the epicyclic

phase encounter value, ®;,, at the arbitrary jth 4+ 1 card is given by Equation (70).

Comparison with Equation (68) for the exact value and the approximate expression,
Equation (70), shows that the error in the approximation is less than 0.3% for x4 = 0.3 and
for the transformed values at ®; ~ m/4, where the most error occurs with odd integer
values of m. By expansion into series form, it can be shown that the error condition when
using the above approximation is

Error < 4 sin(2®; )(sin @,)/24. (71)

The approximation, Equation (70), becomes exact where ®; = m= /2, in which m equals an
integer with zero included.

Equation (70) has far-reaching consequences for isolated encounters of a projectile with a
yaw card. Since 041 = v when the condition of a constant phase encounter value is achieved
and the card encounter phase, ®;,, determines the value of phase encounter jump, o,,;, it
is deduced that

oj41 = 2(tan™" p)(1 + cos D,44), (72)

in which ®;4; = ®;41 — 0;41/2 for an arbitrary yaw card. The transformed phase encounter
value, ®;.1, may be interpreted as the center point of the encounter phase value around
which the interaction takes place. Immediately after the interaction, the phase encounter

value is reduced to ®;1; — 0j41.

Figure 5 shows the normalized value of the phase jump, o,, for g = 0.05 and x4 = 0.3,
plotted as a function of the transformed phase encounter value, ®,,;. These values of the
stability parameter range from one of the smaller values to one of the larger values of p
that might be encountered. The special case for stationary card encounter phase through a

uniformly spaced range is also described by the results of Figure 5, in which v, = 0,,. The
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differences in the values of o, plotted for the two different values of the stability parameter,

&, cannot be seen.

1=0.05,0.3
Kig/Kog=1
-0.5 1,0'12,0 }
Op=0jyp / (41an™ )
AKn = (Kl,]+1/Kl,] - 1)/F(u)
H F(w) = pl(1+p2)2-1]

Figure 5. Normalized Phase Jump and Modal Amplitude Change Versus Quasi-Universal
Transformed Card Encounter Phase Value.

Also shown is the fractional change in the modal arm amplitude, which is plotted for the sta-
bility parameters, 4 = 0.05 and g = 0.3. The plotted curves for AK,, show more differences
than the curves for 7,. These curves can be directly plotted by expressing Equation (20) in
terms of the variable, ®;4::
(K1,j+1)2_1 2ausin & 2. 2%
—IT ) =1-2gusin®;4y + 2p°sin” $;44. (73)
K, ;

Equation (72) not only represents a simple physical basis for the encounter phase and the
epicyclic phase jump but can also be used, because of its fundamental functional form, to
derive a simple expression for the phase encounter value, ®;41, and to show how it approaches
the stationary phase encounter value, ®.,, which depends on 7. For nonstationary phase
encounter values, ®;,, is simply the sum of the encounter phase at the jth + 1 card plus
the interval phase, v, traveled minus the phase jump, o;41, from encountering the jth + 1
card:

Bj2 = ®jp1 +7 - 711 (74)
The behavior of the transformed phase encounter value with card index number can be
obtained by first substituting in the right-hand side of Equation (74) with the results of
Equations (70) and (72) to obtain

®,40 — B4 = 2(tan"" p)(cos ., — cos Dj41). (75)

If the phase encounter value, ®,,,, corresponds to a value in the psuedo-stationary region,

Equation (75) dictates that the value of the next encounter phase moves away from the value
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of the encounter phase on the pseudo-stationary branch corresponding to v and toward the
encounter phase corresponding to ¥ on the stationary branch. Thus, ®, is the solution for
the stationary phase encounter value, which is restricted to 7 < ®., < 2r. Now for small
values of y, the approximation, ®;45 — ®;4; ~ ®;,5 — ®,,1, and treat j as a continuous
variable to obtain a differential equation whose solution is
® ® @ o= ]
|tan —| [tan — — | tan — | tanh(j|sin ®; | tan™" p)
2 2 2
o (76)

®;41 = 2tan™! = = -
q”y (I)l o s F -1

| tan 7| — tan 5 tanh(j|sin @ |tan™" )

4

in which ®, is the initial value for the transformed encounter phase and j assumes the value
zero and any positive integer. Except for the singular point at 7/2, Equation (76) shows
that the asymptotic value for the transformed phase encounter value is always negative,
which is equivalent to the asymptotic phase value being between = and 27. These results
are consistent with Equation (67), which shows that the phase jump approaches a constant
value and that K7 ;41/K7,; > 1 for large values of j.

The epicyclic phase at card encounter as a function of the card index number is shown
in Figure 6. The epicyclic phase at encounter with a yaw card was calculated point by
point from the first card onward (Cooper & Fansler 1997) and also calculated with the ap-
proximation solution given by Equation (76). Comparisons between exact and approximate
calculations showed no significant differences. The foregoing discussion describes the phase
encounter values when the modal arms are equal. An expression has been obtained for

unequal arms but is not given here because of its extreme complexity, which limits insight.

275}

250¢

<I)j +1 (degrees)
[ 8]
o

75 10 15 20 25 30
j+1

Figure 6. Phase Encounter Value Versus Card Index Number.
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5. FURTHER DISCUSSION AND ILLUSTRATIONS

The equations developed are used to examine the detailed yawing motion of the projectile
through a yaw card range. The equations giving the yaw arm values for each interval,
Equations (42) and (43), are substituted into Equation (5) and plotted. The first example
shows the yawing motion for a 7.62-mm projectile passing through a dense yaw card range
discussed previously (McCoy 1992; Cooper & Fansler 1997). Figure 7 shows the yawing
motion comparison of a projectile passing through 10 cards with one set of cards having
¢ = 0.1 while the other set has another projectile passing through cards having p = 0.0.

Having cards with g = 0.0 is an artifice that enables tracking the trajectory even though no

cards exist in the range.

o/ K2’0 K1,0/K2,0=1

Y=1.65
5' $0= (%
,/ (I)lzﬂ’*’ 1.65
/
03<_ 1 B/Kyp

Figure 7. Comparisons of Stable Epicyclic Motion for the 7.62-mm Projectile.

The fast arm and slow arm are initially equal in length, which is approximately the initial
conditions for many projectiles. The curves begin at the origin with ¢; 0 = 27 and ¢, = 7,
which yields for the initial value for the epicyclic yaw, g?)o = 7. The projectiles travel a phase
distance, 51, equal to the phase interval, v = 1.65, so that ®; = 1.65+7. The phase encounter
value at the first card plus the parameter values given in the figure completely define the

motion. After each impact, the curves alternate between dashing and continuous lines. The
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curves pass through the origin on each epicycle, because K;; = K, ; from Equation (28)
when Ko = Ksp.

Figure 8 shows the fast arm modal amplitude increasing by the maximum amount with
each card encounter. The projectile encounters every card with the phase encounter value
®, = (4m + 3)7/2 + tan~! u. For this phase encounter value, oj4; = 2tan™' g, and the

principal phase interval must be such that 7y = 2tan™! 4 to obtain maximal amplification.

3F .
p=0.1 *
2.5 - .
. ®; =32 + tan"lp

X v=2 tan'1u ¢
\..__. 2 .
>3 .

.51 * Kio/Kop=1

2 4 6 8 10 12

Card Index Number

Figure 8. Maximum Growth of Fast Modal Arm.

Figure 9 shows the fast arm modal amplitude changing with maximal decay for each
card encounter. The projectile encounters every card with the phase value ®;4; = (4m +
1)m/2 + tan™! u. As discussed before, because ¢;4; = 2tan~!p for each encounter, the
spacing for the principal phase interval must be such that ¥ = 2tan™! u to obtain maximal
diminishment of the fast modal arm amplitude. Thus, the same range can be used to obtain
Figures 8 and 9. The modal arm decrease is shown for only 12 cards in Figure 9, but with
the computer precision used for the calculation, the curve will start ascending if a hundred
or more cards are traversed. The first terms in Equations (54) and (55) become large relative
to the second terms for large enough values of 7. The smaller the precision in the computer’s
approximation for the starting value or the principal phase interval, the sooner the curve
ceases descending and starts evolving into an exponentially increasing curve. This behavior
has its counterpart in solutions of linear differential equations with exponential solutions
where the positive exponential term has a vanishing small initial component, which grows
large for large values of the independent variable. In practice, it would be difficult to design

an experiment that would yield the results shown in Figure 9. Substantial variations from
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the initial value would result in a growing amplitude for the modal arms after traversing a

few cards.

A card range designed to produce instability could be useful. For instance, high values of
yaw could be induced by judicious placement of the yaw cards. The encounter phase values
for the yaw cards can also be controlled with the yaw card range design. Cameras could be

set up near the range exit to study the flow around the projectile at high angle of attack.

0.9f
p=0.1

o.sf ®; =2 + tan"1p
20.7 y=2tan"y
Y [
= 0.6} .
x .

0.5t [

Kyo/Kpg=1 .
0.4} .

8 10 12

2 A 6
Card Index Number

Figure 9. Maximum Decay of Fast Modal Arm Amplitude.

Figure 10 shows the detailed epicyclic yawing motion when the interval corresponds to
the maximum value of g, which gives the maximum growth in yaw amplitude through a
card range when the first encounter corresponds to the maximum yaw amplitude increase.
Here, the starting condition is éﬁo = 7, and after traveling somewhat more than one epicycle,
encounters the first card at ®; = 37 +2tan~! p. The yaw amplification at the first card will
be very small because this phase value for the first encounter is very near to the encounter
phase value for no amplification, ®; = 3. Equations (24) and (25) show that the delay in
the total phase value caused by the encounter with the first card is very small for 4 = 0.1.
The interval value is larger than 27 and in subsequent card encounters, the encounter phase
changes toward the value ®;4; = 2j7 + 37/2, which corresponds to the maximum yaw
amplification increase. The yawing motion passes through the origin because Ko = K.
If the epicyclic arms had been unequal initially, the ratio of the arm lengths would have
approached unity as the yaw card range was traversed. Then the point of closest approach
to the origin for each epicycle would have been successively less as the yaw cards were
traversed. For @, = 2, the succeeding encounter phase values will again relax to the phase

value that gives the maximum amplification. For any given initial phase value, with the
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exception of ®; = 7 /2, the succeeding phase encounter values will relax toward the phase

value that gives the maximum amplitude increase.

o/ Kz,o

u=0.1 1.5'
Yo=2n+2tan iy

Figure 10. Unstable Epicyclic Motion for a 7.62-mm Projectile.

6. SUMMARY AND CONCLUSIONS

Stability and yaw growth for spin-stabilized projectiles passing through an array of
equally spaced yaw cards are investigated. The encounters of the projectiles with the cards
are treated as impulses, or mathematically, as Dirac delta functions. Solutions obtained
by considering only one card yield expressions for modal arm amplitude changes and also
phase changes that depend only upon the yaw card encounter phase value and the stability

parameter.

The encounter with the yaw card retards the fast arm phase and accelerates the slow
arm phase, resulting in a reduction of the epicyclic phase value. When the modal arm
amplitudes are equal, these encounters equally retard and advance the fast arm phase and
slow arm phase, respectively. These card-induced changes in modal arm phases result, for

stable projectile flight, in a measured overturning moment that is larger than observed with
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spark ranges.

For uniform yaw card arrays, the Dirac delta approach is used to develop difference
equations for a three-card sequence. The difference equations have as parameters the phase
interval between cards and a value that depends upon both the phase interval value and the
stability parameter. The solution obtained describes the yaw arm phases and amplitudes
as the projectile passes through the card array. It depends only on the phase encounter
value for the first card, the phase interval between cards, and the stability parameter value.
Stability boundaries are delineated and compared with approximate stability boundaries.

Conditions for maximum yaw growth and decay with each card encounter are obtained.

If the intervals between yaw cards are such that the projectile experiences unstable flight,
the encounter value for the projectile’s epicyclic phase will asymptotically approach a value
that depends only on the phase interval value between cards. This value is called the sta-
tionary encountered phase value for the yaw card range and can be readily calculated. A
simple quasi-universal relationship between the stationary phase value and the card interval
is further developed. A simple expression is also obtained for the epicyclic phase value that
occurs at each card encounter as the projectile traverses the range for an arbitrary initial

epicyclic phase encounter value.
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LIST OF SYMBOLS

aerodynamic moment overturning coeflicient
moment overturning coefficient for card material
projectile reference diameter

card spacing (m)

axial moment of inertia (kg-m?)

transverse moment of inertia (kg-m?

pAd?T,

nondimensional overturning impulse for card material,

card index value, 7 =0,1,2,-

fast yaw mode magnitude after transit through jth yaw card
slow yaw mode magnitude after transit through jth yaw card
K, jexp (i¢1,5)

K3,jexp (i1¢2,5)

number of complete epicycles contained in interval, v

. . . ) Ad®
nondimensionalized overturning moment, -/-)FC Ma
y

pAd®
21, CMa.

nondimensionalized overturning moment for card material,

apparent nondimensionalized overturning moment from card range
axial spin (rad/s)

25




aq

Yo

Oj+1
Tec
b1,

b2,

Lpd

LV

arc length along trajectory (calibers)
reference area, wd? /4

gyroscopic stability factor

total phase distance to j + 1 card, (¢5 — ¢})s;
magnitude of projectile velocity

angle of attack

total angle of attack

angle of side slip

phase interval between uniformly space cards, v, = Sj+1 — 5;

principal phase interval, vy =, — 2m7,0 < v < 27

. . I
impact stability parameter, ————

¢ — ¢2

air density

“density of card material (kg / m3)

jump of epicyclic phase caused by card encounter, -($j+1 - qﬁj)
card thickness (m)
fast mode phase angle, between jth and j + 1 card

slow mode phase angle, between jth and j 4+ 1 card
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epicyclic phase value constant, ¢ ; — ¢2,;

fast mode angular velocity

slow mode angular velocity

epicyclic phase card encounter value, Sj41 + qAﬁj
transformed encounter phase value, @41 — 0j41/2
stationary transformed encounter phase value, ®;.; — v/2

sin 8 + i sin @, complex yaw
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